Is Cybersecurity a Good Career Field?

A career in cybersecurity can be very lucrative. (Photo credit: Max Duzij)

A career in cybersecurity can be very lucrative. (Photo credit: Max Duzij)

There are many possible IT career paths, and cybersecurity can be a great choice for some. If you like problem solving, consider yourself to be a fast learner, and are passionate about defending against cybercrime, than a career in cybersecurity may be right for you. Here are just a few potential jobs in the cybersecurity field:

Entry Level:

  • IT Technician / Help Desk

  • Network Engineer

  • Junior Security Analyst

  • Junior Penetration Tester

  • Systems Administrator

Mid-Level:

  • Security Technician

  • Security Analyst

  • Penetration Tester

  • Incident Responder

Advanced:

  • Cybersecurity Architect

  • Cybersecurity Engineer

  • Chief Information Security Officer

  • Cybersecurity Manager

This list is definitely not exhaustive, and there is some overlap between job titles and what the actual job entails depending on who you speak to. When job searching, it is also worth noting that there is no standard for whether these jobs are called cybersecurity, cyber security, IT security, etc. It is recommended to tailor your resume to fit whatever terminology the current job description is using; this helps you not get filtered out by an automated system looking for keywords that may or may not be on your resume. Again, the job description for that particular listing is your best resource when choosing your words carefully.

How to get started

To get your first job in cybersecurity, start by looking at your current background. Do you already have a degree or work experience in IT? Do you have a degree in an unrelated field? Some jobs are looking for a 4-year degree, and some are not. Certifications are a great first step, whether or not you have a degree. Many professionals recommend the CompTIA Network+ and Security+ as some of the first certifications to get to jumpstart any IT career.

It is also important to get hands on experience. Start using programs like Nmap to see how network connections work. Download a virtual machine and install an operating system that you might be less familiar with, such as a Linux distribution. Volunteer at a local small company to help them with tech support and troubleshooting. Watch some videos about bash scripting or Python and teach yourself some basic coding. Do anything that you can to add relevant skills and experience to your resume!

A degree in IT can help, but it is not required for all jobs. What you know and what you can do is more important than what school you did or didn’t go to. Don’t forget about soft skills: being able to communicate professionally is key to any interview and any successful career.

If you are passionate about technology and willing to do the work to learn the skills you need, a career in cybersecurity can be a great fit. Good luck!

Circuit-Switched vs. Packet-Switched Networking

Packet switching breaks down data into smaller blocks and sends one packet at a time, while circuit switching maintains a connection until all data is sent.  (Photo credit: Markus Spiske)

Packet switching breaks down data into smaller blocks and sends one packet at a time, while circuit switching maintains a connection until all data is sent. (Photo credit: Markus Spiske)

What is the difference between circuit-switched and packet-switched networks? To begin to answer this question, each term needs to be defined.

Circuit switching is defined as a connection between two devices on a network that use a temporary, dedicated communications channel to connect. The first example of this was with with some of the first analog telephone networks. In that case, a continuous circuit was maintained during the duration of the phone call, and the circuit was terminated when the call ended.

Some examples of technologies that use/used circuit switching:

  • POTS - plain old telephone service

  • ISDN - Integrated Services Digital Network

    • BRI - Basic Rate Interface

    • PRI - Primary Rate Interface

Conversely, packet switching is defined as transferring data using smaller packets of data, so the connection between two devices is only used for that packet, and then is freed up for other devices to send packets along the connection. This method is used today to in modern networks limit latency and increase bandwidth efficiency.

Examples of technologies that use packet switching:

  • Frame Relay Networks

  • X.25 Networks

  • ATM - Asynchronous Transfer Mode

  • MPLS - Multiprotocol Label Switching

What is a Rootkit?

Rootkits are nearly invisible and therefore very difficult to remove. (Photo credit: Michael Dziedzic)

Rootkits are nearly invisible and therefore very difficult to remove. (Photo credit: Michael Dziedzic)

The term “rootkit” is derived from the Linux/Unix name for the highest level user, “root.” The root user has administrator access to a system and is therefore able to modify anything within it.

A rootkit is a tool that allows a hacker to covertly gain access to a system. Rootkits are difficult to detect because they modify the kernel of the operating system. The kernel is the very center of the OS and facilitates interactions between the software and hardware. By modifying the kernel and gaining administrative access, a rootkit allows a hacker to install other malware on your system and prevent you from removing it. This could potentially lead to loss of your data, money, and access to your computer.

Rootkits can typically only be removed with very particular rootkit removal software. It is also important to be very careful when choosing rootkit removal software, as sometimes the “bad guys” put fake rootkit removal software out there which actually just adds more malware to your computer.

To prevent rootkits and other malware from getting onto your computer, it is important to take some basic precautions, such as:

  • Keep your operating system, web browser, and other applications up to date.

  • Use virus protection software and routinely scan for malware.

  • Use a firewall and avoid visiting suspicious websites.

  • Avoid opening emails and attachments from unknown recipients.

These are just a few steps anyone can take to help prevent malware from slowing down your system or leaking out critical personal data to attackers. Remember that it only takes one mistake for a hacker to gain access to your hardware/data. Stay informed, and stay vigilant!

What is Malware?

Take active steps to prevent malware from infiltrating your system! (Photo credit: Michael Geiger)

Take active steps to prevent malware from infiltrating your system! (Photo credit: Michael Geiger)

Malware can be described as any software that is doing something bad to your computer. Malware could do something annoying such as cause pop-up ads, something dangerous like collecting keystrokes as you type, or something discreet like force your computer to become part of a “botnet” without you even knowing!

One type of malware is called “crypto-malware,” which encrypts the data on your device, rendering it inaccessible to you. Another example of malware is called “ransomware,” which causes your data to be locked up until you pay a ransom to the hackers that installed the malware. Other types of malware include “Trojan horses,” “Worms,” and many types of viruses.

To help protect your systems against malware, there are several important things you can do:

  • Keep your operating system, web browser, and other applications up to date.

  • Use virus protection software and routinely scan for malware.

  • Use a firewall and avoid visiting suspicious websites.

  • Avoid opening emails and attachments from unknown recipients.

These are just a few steps anyone can take to help prevent malware from slowing down your system or leaking out critical personal data to attackers. Remember that it only takes one mistake for a hacker to gain access to your hardware/data. Stay informed, and stay vigilant!